Fine root biomass production and turnover in evergreen forests of Central Himalaya, India

S. USMAN, Y.S. RAWAT, S.P. SINGH and S.C. GARKOTI
Department Botany, Kumaun University, Nainital - 263002, India

Abstract. Fine root biomass, net primary production and turnover in two evergreen Central Himalayan forests viz., *Quercus leucotrichophora* and *Pinus roxburghii* forest are described here. The fine root biomass and fine root net primary production decreased with increasing soil depth. The total annual fine root biomass was 2,071 kg ha\(^{-1}\) in chir pine forest and 3,226 kg ha\(^{-1}\) in banj oak forest. The fine root net production was 3,428 kg ha\(^{-1}\) yr\(^{-1}\) in oak forest which was higher than the fine root production of pine forest (2,459 kg ha\(^{-1}\) yr\(^{-1}\)). In banj oak forest the fine root turnover rate (0.826) was maximum at 40-60 cm soil depth and in chir pine forest the turnover rate was maximum at 0-20 cm soil depth (0.730). The percent contribution of live root biomass to total root biomass ranged from 63-88 percent. The maximum fine root biomass and net primary production was recorded in rainy season followed by summer and winter season in both the forests. The nitrogen (%) concentration decreased with increasing soil depth and ranged from 0.48-0.68% in chir pine forest and 0.60-0.76% in oak forest.

Key-words: root biomass, production, *Quercus leucotrichophora*, *Pinus roxburghii*, Central Himalaya

Introduction

Fine root production is an important component of both dry matter and nutrient cycling in forest ecosystems (Vogt et al. 1986 b; McClaugherthy et al. 1984, Singh 1983). Data from numerous studies have shown that the greatest proportion of the root system of many forests is located in the upper soil horizon (Vogt et al. 1983). The roots near the soil surface undergo much more rapid changes than the deep roots (Hendrick and Pregitzer).

The role of small diameter roots and mycorrhiza in total forest biomass dynamics were undecated (Caldwell 1979, Herman 1977, Santantonio et al. 1977). In many previous studies rough estimates of belowground turnover were accepted as an alternative to having no estimate at all (Harris et al. 1977, Leith 1968) what control the death and replacement of fine root in forest ecosystems is a matter of conjecture (Caldwell 1979, Harman 1977, Perras 1982, Sutton 1980). Investigators of production ecology and nutrient cycling in forests face a major gap in their understanding of system process because little is known about production and turnover of fine roots (Jarvis and Leverenz 1983, Santantonio and Grace 1987). Methodological difficulties, i.e., lack of uniform investigatory techniques together with varying environmental conditions make it practically impossible at present to draw a general conclusion from available data in literature. The most commonly used method of estimating fine root production and mortality involves periodic measurements of live and dead fine root biomass. Production and mortality rates are based on changes in fine root biomass (Perras 1978, McClaugherthy et al. 1982). Soil cores have been accepted as a suitable means of sampling, but a standard method to quantify fine roots in soil cores remains unidentified. Fogel (1983,1985) and Perras (1983) have discussed many technical difficulties. Methods vary widely and only a few data are directly comparable.

This present study is an attempt to understand the fine root production and turnover rates in Himalayan forests and to compare those estimates with similar studies in other part of the world.

Material and methods

Site description

The study was conducted in Nainital district of Uttar Pradesh, India 79°15' to 79°38'E in 1,600 m to 2,150 m altitude. The year is divisible into three main seasons viz. rainy (mid June to September), winter (October to March) and summer season (April to mid June). Of the annual rainfall of 1,963 mm 90% encountered in the rainy season (Usman 1993). The mean daily temperature ranges between 7°C and 19.3°C. The annual value (119.4) of P.E, Index (precipitation effectiveness) indicate that it falls within the humid climate regime. However, April and November are dry months (Fig. 1).

In *Quercus leucotrichophora* site rocks are black carbonaceous and pyritous locally oxidised to as grey colour within characteristic oxidation rings on parting planes. Rocks in the pine site are quartzite consisting of variegated purple, brown, fawn, grey and white quartzarenite and sublitharenite interbedded with purple perruginous.

In both of the forest soils were sandy clay in texture. However significant differences were observed in soil pH, bulk density, total nitrogen, carbon, phosphorus, and potassium between the soil of banj oak and chir pine forests (Table 1). The two species differ greatly in tissue N concentration and its retranslocation from leaves during senescence. Both of the forests had similar tree density, but the total basal area of banj oak forest (6,592 cm\(^2\) 100m\(^2\) was
greater than that of chir pine (3,474 cm² 100m²) forest. Investigators of production ecology and nutritive cycling in forest face a major gap in their understanding of systems process because little is know about production and turnover of fine roots (Jarvis and Leverenz 1983, Santantoni and Grace 1987).

Methods

Fine root biomass

Fine root biomass (< 1mm diameter in both the forest stands (i.e. *Quercus leucotrichophora* and *Pinus roxburghii*) was determined seasonally by sorting fine roots from the soil cores taken during mid-June, mid-September and mid-December. Sampling was done in three directions of the sample tree and the sampling point were located 1/2, 1/4th and 1/8th distance from the centre of neighbouring trees. Soil cores were obtained by driving a sharp edged steel tube (8.5 cm inside) sliced into 0-20, 20-40, and 40-60 cm soil depth.

Seventy-one soil cores were taken for each depth class. Individual cores were placed in polythene bags and returned to the laboratory for sorting.

In the laboratory, roots were separated from the other organic material by passing the soil cores through a sequence of fine sieves with the hole size ranging from 12.7 to 2 mm. Live and dead root material was hand sorted from the residue remaining on each sieve. Live and dead roots were distinguished on the basis of colour and texture. Dead roots were dark and spongy living roots were pinkish and firm. In case of doubt roots were cut with a sharp razor and examined under magnification for colour and cohesion between the cortex. Fine roots are generally defined as non-woody small diameter and mycorrhizae. Upper values for fine root diameter vary among published studies and generally ranged from <1 to <5 mm. Definition of fine root vary among studies because its morphology and size vary among species and even within species across site (Pitter 1985).

In the laboratory roots were separated (up to < 1 mm diameter) with the help of forceps and attached organic material soil particles were removed by washing through running tap water. These samples were oven dried at 80°C till constant weight. The over dried root samples were pooled depth wise powdered and placed in plastic bags and sealed for chemical analysis. The total fine root nitrogen was determined by microkjeldahl method (Jackson 1968).

Fine root production

Fine root production was calculated through maximum minimum method. The maximum-minimum method changes in fine root biomass in volumetric soil samples are considered to estimate fine root production. This method is simpler than the other method in that it uses only the difference between annual minimum and maximum fine root biomass to estimate FRP (Singh and Yadava, 1974; McClaugherty et al. 1982; Aber et al. 1985).

Fine root turnover

The turnover rate of belowground biomass was calculated by the method proposed by Dahlman and Kučera (1965):

\[
\text{Turnover} = \frac{\text{Fine root net production}}{\text{Maximum fine root biomass}}
\]

Results

Fine root biomass and fine root production

The fine root biomass (FRB) represents a varying proportion of the total accumulated organic matter of the forests stands.

Marked seasonal variation in the fine root biomass were observed in both the forests. Seasonal live fine root biomass vary from 24-972 kg ha⁻¹ (across different soil depth) in banj oak forest and from 26-749 kg ha⁻¹ (across different soil depth in chir pine forest. The live fine root biomass (all soil depths) was at its maximum in the rainy season. In oak forest, it was 972 kg ha⁻¹, 572 kg ha⁻¹, and 142 kg ha⁻¹, and in pine forest it was 749 kg ha⁻¹, 401 kg ha⁻¹, and 89 kg ha⁻¹, respectively at 0-20, 20-40 and 40-60 cm soil depth. Fine root necromass (dead root biomass) also changed seasonally in both the forests (Table 2). This appeared to be related to the seasonal changes in fine root biomass. At different soil depths the fine root necromass ranged from 46 kg ha⁻¹ (winter) to 1,974 kg ha⁻¹ (rainy) in banj oak and from 46 kg ha⁻¹ (winter) to

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Q.1</th>
<th>P.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk density (g cm⁻²)</td>
<td>0.89</td>
<td>0.98</td>
</tr>
<tr>
<td>Texture (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>56.1</td>
<td>61.9</td>
</tr>
<tr>
<td>Silt</td>
<td>25.0</td>
<td>20.4</td>
</tr>
<tr>
<td>Clay</td>
<td>18.6</td>
<td>17.8</td>
</tr>
<tr>
<td>pH</td>
<td>6.4</td>
<td>5.8</td>
</tr>
<tr>
<td>Total n(%)</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>Organic C(%)</td>
<td>3.06</td>
<td>2.54</td>
</tr>
<tr>
<td>Available P(%)</td>
<td>0.016</td>
<td>0.008</td>
</tr>
<tr>
<td>Total K(%)</td>
<td>0.10</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 1. Comparative account of physico-chemical properties of soil in *Quercus leucotrichophora* (Q.1) and *Pinus roxburghii* (P.1) forest.
- 1.338 kg ha⁻¹ (rainy) in pine forest. In both the forests the fine root biomass was more than twice as much as live mass. The bulk of fine root biomass was concentrated to a depth of 20 cm (63%) of the total fine root biomass. For both study sites the proportion of dead fine root (neomass in total fine root biomass) showed a narrow range across the season (62-66%). The total annual fine root biomass was 2.071 kg ha⁻¹ in chir pine forest and 3.236 kg ha⁻¹ in banj oak forest. Large variation in the amount of fine roots (FRB+FRN) were found in both stands (Fig 2).

The total fine root production was 3.428 kg ha⁻¹ yr⁻¹ in oak forest which was higher than the fine root production of pine forest (2.459 kg ha⁻¹ yr⁻¹). At different soil depths the rate of turnover ranged from 0.67-0.83 yr⁻¹ in oak and from 0.70-0.73 yr⁻¹ in pine forest respectively (Table 3).

Fine root N concentration:

The N concentration of fine root also showed seasonal pulses. In oak forest at 0-20 cm soil depth the maximum N was found in rainy season (0.76%) followed by summer (0.73%) and winter (0.71%). Similar seasonal patterns were observed for all soil depths (i.e. 20-40 and 40-60 cm soil depth). Across the seasons the N concentration of fine roots was higher in banj oak forest (0.76% at 0-20 cm) compared to pine forest (0.68% at 0-20 cm soil depth - Table 4).

Discussion

![Fig. 2. Seasonal contribution of fine roots (%) in different soil depths of banj oak (a) and chir pine (b) forests.](image)
Table 5. Fine root standing crop in various forests of the world. For references see Usman (1993).

<table>
<thead>
<tr>
<th>Forest type</th>
<th>Location</th>
<th>Diameter Class (mm)</th>
<th>Root Standing References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry deciduous forest</td>
<td>Varanasi, India</td>
<td><6</td>
<td>4000-5000 kg ha⁻¹ Singh and Singh (1981)</td>
</tr>
<tr>
<td>Evergreen forests</td>
<td>Western Ghats</td>
<td>≤2</td>
<td>3,420 kg ha⁻¹ Parthasarathy (1968)</td>
</tr>
<tr>
<td>Semi-evergreen</td>
<td>Western Ghats</td>
<td>≤2</td>
<td>3,500 kg ha⁻¹ Parthasarathy (1968)</td>
</tr>
<tr>
<td>Mixed deciduous</td>
<td>Kalakad Western Ghats</td>
<td>≤2</td>
<td>1,830 kg ha⁻¹ Parthasarathy (1968)</td>
</tr>
<tr>
<td>Tropical rain forest</td>
<td>Ivory Coast</td>
<td>≤5</td>
<td>8,800-9,600 kg ha⁻¹ Hurdle (1969)</td>
</tr>
<tr>
<td>Mixed tropical forest</td>
<td>Ghana</td>
<td>≤5</td>
<td>8,000-10,000 kg ha⁻¹ Jenik (1969)</td>
</tr>
<tr>
<td>Moist semi-deciduous forest</td>
<td>Ghana</td>
<td>≤5</td>
<td>56,000-124,000 kg ha⁻¹ Lowson et al. (1970)</td>
</tr>
<tr>
<td>Terra firma forest</td>
<td>Latesol of Amazonia</td>
<td>≤6</td>
<td>16,100 kg ha⁻¹ Klinge (1973)</td>
</tr>
<tr>
<td>Terra firma forest</td>
<td>Podzol of Amazonia</td>
<td>≤6</td>
<td>10,900 kg ha⁻¹ Klinge (1973)</td>
</tr>
<tr>
<td>Central Amazon rain forest</td>
<td>Brazil</td>
<td>≤2</td>
<td>8,430 kg ha⁻¹ Klinge (1973)</td>
</tr>
<tr>
<td>Tropical wet forest</td>
<td>Costa Rican</td>
<td>≤5</td>
<td>3,690-6,620 kg ha⁻¹ Gower (1987)</td>
</tr>
<tr>
<td>Mixed hardwood forest</td>
<td>SE Virginia & NE N.Carolina</td>
<td><2-<5</td>
<td>18,870 kg ha⁻¹ Powell and Day (1991)</td>
</tr>
<tr>
<td>Tropical dry deciduous</td>
<td>Chamaelasia</td>
<td><0.5-231,000</td>
<td>Castellanos et al. (1991)</td>
</tr>
<tr>
<td>Tropical dry deciduous</td>
<td>Chamaelasia</td>
<td><0.5-245,000</td>
<td>Murphy and Lugo (1988b)</td>
</tr>
<tr>
<td>Pseudotsuga menziesii</td>
<td>Chamaelasia</td>
<td><0.5-217,000</td>
<td>Hellman & Gassell (1963)</td>
</tr>
<tr>
<td>Quercus leucotrichophora</td>
<td>Nainital, India</td>
<td><1</td>
<td>3,236 kg ha⁻¹ Usman (1993)</td>
</tr>
<tr>
<td>Pinus roxburghii</td>
<td>Nainital, India</td>
<td><1</td>
<td>2,072 kg ha⁻¹ Usman (1993)</td>
</tr>
</tbody>
</table>

The root biomass was inversely proportional to the bulk of soil depth (Nambar and Sand 1992). According to Nambar and Sand (1992) when bulk increases, soil strength increases, and aeration decreases leading to an adverse effect on root growth consistent with the fine root biomass the nitrogen concentration was also higher during rainy season followed by summer and winter seasons. Also the nitrogen concentration of fine roots decreased with increase in soil depth. These results are consistent with the findings of Charles et al. (1992) for hardwood forest.

Fine root production and dieback are seasonal and can result in seasonal changes in fine root biomass which is a factor that can limit comparison of studies undertaken at different times of the year. Ovington et al. (1963) found that in an oak wood ecosystem in central Minnesota the fine root biomass increased from 12.9 t ha⁻¹ to 20.7 t ha⁻¹ in the period from April to July and then decreased again to 10 t ha⁻¹ by December. Similar seasonal patterns of fine root biomass were observed for both of the present sites. In the bajn oak forest it increased from 3.2 t ha⁻¹ to 5.2 t ha⁻¹ from summer to rainy season and declined to 1.4 t ha⁻¹ in winter season. In the case of the chin pine forest, fine root biomass increased from 1.8 t ha⁻¹ in summer to 3.4 t ha⁻¹ in rainy season and decline 0.9 t ha⁻¹ in winter season.

Estimates of fine root production derived from the maximum-minimum method are generally well below the upper limit to FRP as derived from ingrowth method for the same study area (Usman 1993). In the present study the fine root derived from the maximum-minimum up to 60 cm soil depth was 3.4 t ha⁻¹ in oak and 2.5 t ha⁻¹ in chin pine forest however, for similar forest sites FRP by ingrowth method was 5.2 and 3.7 t ha⁻¹ in oak and pine forests, respectively (Usman 1993), so this maximum minimum method can be used to define a lower limit to FRP at a site. This method underestimates FRP, however, at sites where fine root biomass is not seasonally variable, where roots are short lived, or where period of production and mortality overlap (Aber et al. 1985, Kurz and Klimms 1987, Nadelhoffer and Reich 1992).

The turnover rate of belowground biomass was calculated by the method proposed by Dahlman and Kučera (1965). Turnover rate shows that in bajn oak forest maximum amount of biomass was replaces by the lower soil layer (i.e. 40-60 cm soil depth) and minimum by upper soil layer (67%). About 75% of root biomass peaked during rainy season. McClaugherty et al. (1982) have made similar observation in red pine forest. In both the forests percent concentration of fine root biomass was higher (about 53 and 55%) during rainy season followed by summer (32 and 33%) and winter (15 and 16%) respectively in oak and pine forests. Similar seasonal patterns of root biomass were also observed by Keyes and Grier (1981) for a spruce and sub-alpine fir forest in British Columbia. Similarly in both the forests, with an increase in fine root biomass, the fine root necromass (dead fine root) was decreased slightly, presumably because of low death rate and faster rate of fine root decomposition. This was consistent with the findings of Keyes and Grier (1981). The percent contribution of fine root necromass to total fine root was fairly stable across seasons and both forest sites (64-66%). Santantonio and Santantonio (1987) also reported similar values for P. radiata plantation in New Zealand.

Consistent with the findings of Moir & Bachelard (1969) the average contribution of root biomass in both forests were 63%, 31%, and 7%, respectively in 0-20, 20-40 and 40-60 cm soil depth. Santantonio and Santantonio (1987) and Castellanos et al. (1991) observed that about 90% of total fine root biomass occurred up to 40 cm soil depth, and fine root biomass declined below 15 cm depth in the mineral soil.

McQueen (1968) and Kimmins and Hawks (1978) found that the concentration of fine root in the upper soil in mixed pine beech forest and white spruce sub-alpine fir forest were correlated with high concentration of organic matter and nutrients with favourable physical soil conditions. The vertical distribution of fine root in our study correlated with the vertical distribution of nutrients along soil depth (Table 4).
biomass was replaced by 20-40 cm soil depth. However, in chin pine forest the maximum amount of fine root biomass was replaced by upper soil layers (i.e. 0-20 cm soil depth) 73% as compared to middle soil layers (20-40 cm soil depth) as well as lower soil layers (40-60 cm soil depth).

Acknowledgement

Funding support was provided by Council of Scientific and Industrial Research, Govt. of India, New Delhi.

References

Received 14 June 1986; revised 27 October 1986; accepted 2 February 1997.